整合致孔肽的纳米递药系统的研究进展

申春姣, 周秀婷, 丛可心, 赵锋, 张佳, 何朝星, 曹德英, 杨少坤, 张国强, 向柏

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (12) : 1057-1064.

PDF(1804 KB)
PDF(1804 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (12) : 1057-1064. DOI: 10.11669/cpj.2023.12.001
综述

整合致孔肽的纳米递药系统的研究进展

  • 申春姣1, 周秀婷1, 丛可心1, 赵锋1, 张佳2, 何朝星1, 曹德英1, 杨少坤1*, 张国强3,4*, 向柏1
作者信息 +

Research Progress in Nano Drug Delivery System Integrating Pore-Forming Peptides

  • SHEN Chun-jiao1, ZHOU Xiu-ting1, CONG Ke-xin1, ZHAO Feng1, ZHANG Jia2, HE Chao-xing1, CAO De-ying1, YANG Shao-kun1*, ZHANG Guo-qiang3,4*, XIANG Bai1
Author information +
文章历史 +

摘要

纳米载体普遍具有安全、高效及靶向性等优点,是一种极具潜力的药物递送载体。致孔肽是一种线性阳离子膜致孔多肽,具有多种生物用途。致孔肽既是一类细胞递送促进剂,也是一种新型的肿瘤杀伤多肽 (克服耐药性)。在结合致孔肽构建的纳米递送系统中,有些致孔肽可促进药物内涵体逃逸进而提高胞质递送效率,有些具有肿瘤靶向或内质网靶向作用,有些则作为抗癌药物发挥癌症治疗作用。笔者对结合致孔肽构建的纳米递送系统的研究进行了整理和归纳,对应用到的致孔肽种类进行了总结,并对致孔肽在纳米递送系统中发挥的作用进行了梳理和分类,以期为构建更合理、更有效的整合致孔肽的纳米药物递送平台提供参考。

Abstract

Nanocarriers generally have the advantages of safety, high efficiency and targeting, and are a class of potential drug delivery vehicles. As a kind of linear cationic membrane pore-forming polypeptides with a variety of biological uses, pore-forming peptides (PFPs) can be used not only as a class of cell delivery enhancer, but also as a new type of tumor-killing polypeptides (overcoming drug resistance). In the nano-delivery system constructed by combining pore-forming peptides, some pore-forming peptides can promote endosomal escape of drug and thus improve the efficiency of cytoplasmic delivery, some have tumor cell targeting or endoplasmic reticulum targeting effects, and some act as anticancer drugs. This review sums up the studies on nano-delivery systems combined with pore-forming peptides, summarizes the types of pore-forming peptides that have been applied in nano-delivery systems, and classifies the role of pore-forming peptides in nano-delivery systems, thereby providing a reference for the construction of a more reasonable and effective nano drug delivery platform integrating pore-forming peptides.

关键词

致孔肽 / 纳米药物递送系统 / 内涵体逃逸 / 胞质递送 / 肿瘤靶向

Key words

pore-forming peptide / nano drug delivery system / endosomal escape / cytoplasmic delivery / tumor targeting

引用本文

导出引用
申春姣, 周秀婷, 丛可心, 赵锋, 张佳, 何朝星, 曹德英, 杨少坤, 张国强, 向柏. 整合致孔肽的纳米递药系统的研究进展[J]. 中国药学杂志, 2023, 58(12): 1057-1064 https://doi.org/10.11669/cpj.2023.12.001
SHEN Chun-jiao, ZHOU Xiu-ting, CONG Ke-xin, ZHAO Feng, ZHANG Jia, HE Chao-xing, CAO De-ying, YANG Shao-kun, ZHANG Guo-qiang, XIANG Bai. Research Progress in Nano Drug Delivery System Integrating Pore-Forming Peptides[J]. Chinese Pharmaceutical Journal, 2023, 58(12): 1057-1064 https://doi.org/10.11669/cpj.2023.12.001
中图分类号: R944   

参考文献

[1] JAHANAFROOZ Z, MOKHTARZADEH A. Pore-forming peptides: a new treatment option for cancer [J]. Curr Med Chem, 2022, 29(23):4078-4096.
[2] MIHAJLOVIC M, LAZARIDIS T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides [J]. Biochim Biophys Acta, 2012, 1818(5):1274-1283.
[3] WANG W, KAI D, LU H, et al. The strategies of endosomal escape for intracellular gene delivery [J]. Acta Pharm Sin (药学学报), 2014, 49(8):1111-1116.
[4] PATERSON D J, TASSIERI M, REBOUD J, et al. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes [J]. Proc Natl Acad Sci USA, 2017, 114(40):e8324-e8332.
[5] VECCHIO A J, RATHNAYAKE S S, STROUD R M. Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut [J]. Proc Natl Acad Sci USA, 2021, 118(15):e2024651118. Doi: 10.1073/pnas.2024651118.
[6] QIAO L, YANG H, GAO S, et al. Research progress on self-assembled nanodrug delivery systems [J]. J Mater Chem B, 2022, 10(12):1908-1922.
[7] PI Y, ZHOU J, WANG J, et al. Strategies of overcoming the physiological barriers for tumor-targeted nano-sized drug delivery systems [J]. Curr Pharm Des, 2015, 21(42):6236-6245.
[8] BIRMINGHAM C L, CANADIEN V, KANIUK N A, et al. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles [J]. Nature, 2008, 451(7176):350-354.
[9] PETRIŠIŠ N, KOZOROG M, ADEN S, et al. The molecular mechanisms of listeriolysin O-induced lipid membrane damage [J]. Biochim Biophys Acta Biomembr, 2021, 1863(7):183604. Doi: 10.1016/j.bbamem.2021.183604.
[10] KOZOROG M, SANI M A, LENARI IVKOVIC M, et al. (19)F NMR studies provide insights into lipid membrane interactions of listeriolysin O, a pore forming toxin from Listeria monocytogenes [J]. Sci Rep, 2018, 8(1):6894. Doi: 10.1038/s41598-018-24692-6.
[11] WALLS Z F, GOODELL S, ANDREWS C D, et al. Mutants of listeriolysin O for enhanced liposomal delivery of macromolecules [J]. J Biotechnol, 2013, 164(4):500-502.
[12] WALLS Z F, GONG H, WILSON R J. Liposomal Coencapsulation of Doxorubicin with Listeriolysin O Increases Potency via Subcellular Targeting [J]. Mol Pharm, 2016, 13(3):1185-1190.
[13] PROVODA C J, STIER E M, LEE K D. Tumor cell killing enabled by listeriolysin O-liposome-mediated delivery of the protein toxin gelonin [J]. J Biol Chem, 2003, 278(37):35102-35108.
[14] KULLBERG M, MANN K, ANCHORDOQUY T J. Targeting Her-2+ breast cancer cells with bleomycin immunoliposomes linked to LLO [J]. Mol Pharm, 2012, 9(7):2000-2008.
[15] MATHEW E, HARDEE G E, BENNETT C F, et al. Cytosolic delivery of antisense oligonucleotides by listeriolysin O-containing liposomes [J]. Gene Ther, 2003, 10(13):1105-1115.
[16] LORENZI G L, LEE K D. Enhanced plasmid DNA delivery using anionic LPDII by listeriolysin O incorporation [J]. J Gene Med, 2005, 7(8):1077-1085.
[17] KULLBERG M, MCCARTHY R, ANCHORDOQUY T J. Gene delivery to Her-2+ breast cancer cells using a two-component delivery system to achieve specificity [J]. Nanomedicine, 2014, 10(6):1253-1262.
[18] KIM N H, PROVODA C, LEE K D. Design and characterization of novel recombinant listeriolysin O-protamine fusion proteins for enhanced gene delivery [J]. Mol Pharm, 2015, 12(2):342-350.
[19] SUN X, PROVODA C, LEE K D. Enhanced in vivo gene expression mediated by listeriolysin O incorporated anionic LPDII:Its utility in cytotoxic T lymphocyte-inducing DNA vaccine [J]. J Controlled Release, 2010, 148(2):219-225.
[20] MANDAL M, LEE K D. Listeriolysin O-liposome-mediated cytosolic delivery of macromolecule antigen in vivo:enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity, and tumor protection [J]. Biochim Et Biophysica Acta, 2002, 1563(1-2):7-17.
[21] STIER E M, MANDAL M, LEE K D. Differential cytosolic delivery and presentation of antigen by listeriolysin O-liposomes to macrophages and dendritic cells [J]. Mol Pharm, 2005, 2(1):74-82.
[22] MANDAL M, KAWAMURA K S, WHERRY E J, et al. Cytosolic delivery of viral nucleoprotein by listeriolysin O-liposome induces enhanced specific cytotoxic T lymphocyte response and protective immunity [J]. Mol Pharm, 2004, 1(1):2-8.
[23] ANDREWS C D, HUH M S, PATTON K, et al. Encapsulating immunostimulatory CpG oligonucleotides in listeriolysin O-liposomes promotes a Th1-type response and CTL activity [J]. Mol Pharm, 2012, 9(5):1118-1125.
[24] KULLBERG M, OWENS J L, MANN K. Listeriolysin O enhances cytoplasmic delivery by Her-2 targeting liposomes [J]. J Drug Target, 2010, 18(4):313-320.
[25] PLAZA-GA I, MANZANEDA-GONZALEZ V, KISOVEC M, et al. pH-triggered endosomal escape of pore-forming Listeriolysin O toxin-coated gold nanoparticles [J]. J Nanobiotechnol, 2019, 17(1):108. Doi:10.1186/s12951-019-0543-6.
[26] MANN K, KULLBERG M. Trastuzumab-targeted gene delivery to Her2-overexpressing breast cancer cells [J]. Cancer Gene Ther, 2016, 23(7):221-228.
[27] LEE M T, SUN T L, HUNG W C, et al. Process of inducing pores in membranes by melittin [J]. Proc Natl Acad Sci USA, 2013, 110(35):14243-14248.
[28] VAN DEN BOGAART G, GUZMAN J V, MIKA J T, et al. On the mechanism of pore formation by melittin [J]. J Biol Chem, 2008, 283(49):33854-33857.
[29] OKADA M, ORTIZ E, CORZO G, et al. Pore-forming spider venom peptides show cytotoxicity to hyperpolarized cancer cells expressing K+ channels:A lentiviral vector approach [J]. PLoS One, 2019, 14(4):e0215391. Doi: 10.1371/journal.pone.0215391.
[30] WANG J, LU Z, WIENTJES M G, et al. Delivery of siRNA therapeutics:barriers and carriers [J]. AAPS J, 2010, 12(4):492-503.
[31] HOU K K, PAN H, LANZA G M, et al. Melittin derived peptides for nanoparticle based siRNA transfection [J]. Biomaterials, 2013, 34(12):3110-3119.
[32] HOU K K, PAN H, RATNER L, et al. Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides [J]. ACS Nano, 2013, 7(10):8605-8615.
[33] KEIL T W M, BALDASSI D, MERKEL O M. T-cell targeted pulmonary siRNA delivery for the treatment of asthma [J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(5):e1634. Doi: 10.1002/wnan.1634.
[34] KIM M G, SHON Y, KIM J, et al. Selective Activation of Anticancer Chemotherapy by Cancer-Associated Fibroblasts in the Tumor Microenvironment [J]. J Natl Cancer Inst, 2017, 109(1). djw186. Doi: 10.1093/jnci/djw186.
[35] ALVAREZ C, SOTO C, CABEZAS S, et al. Panorama of the Intracellular Molecular Concert Orchestrated by Actinoporins, Pore-Forming Toxins from Sea Anemones [J]. Toxins (Basel), 2021, 13(8):567. Doi: 10.3390/toxins13080567.
[36] LABORDE R J, SANCHEZ-FERRAS O, LUZARDO M C, et al. Novel Adjuvant Based on the Pore-Forming Protein Sticholysin II Encapsulated into Liposomes Effectively Enhances the Antigen-Specific CTL-Mediated Immune Response [J]. J Immunol, 2017, 198(7):2772-2784.
[37] CRUZ-LEAL Y, GRUBAUGH D, NOGUEIRA C V, et al. The Vacuolar Pathway in Macrophages Plays a Major Role in Antigen Cross-Presentation Induced by the Pore-Forming Protein Sticholysin Ⅱ Encapsulated Into Liposomes [J]. Front Immunol, 2018, 9(5):2473. Doi: 10.3389/fimmu.2018.02473.
[38] KONDRASHOV O V, GALIMZYANOV T R, PAVLOV K V, et al. Membrane Elastic Deformations Modulate Gramicidin A Transbilayer Dimerization and Lateral Clustering [J]. Biophys J, 2018, 115(3):478-493.
[39] ROUX B. Computational studies of the gramicidin channel [J]. Acc Chem Res, 2002, 35(6):366-375.
[40] ZHANG M, ZHOU X, WANG B, et al. Lactosylated gramicidin-based lipid nanoparticles (Lac-GLN) for targeted delivery of anti-miR-155 to hepatocellular carcinoma [J]. J Controlled Release, 2013, 168(3):251-261.
[41] GHATAK S, LI J, CHAN Y C, et al. AntihypoxamiR functionalized gramicidin lipid nanoparticles rescue against ischemic memory improving cutaneous wound healing [J]. Nanomedicine, 2016, 12(7):1827-1831.
[42] BENZ R, POPOFF M R. Clostridium perfringens Enterotoxin:The Toxin Forms Highly Cation-Selective Channels in Lipid Bilayers [J]. Toxins (Basel), 2018, 10(9). 2018, 10(9):341. Doi: 10.3390/toxins10090341.
[43] KITADOKORO K, NISHIMURA K, KAMITANI S, et al. Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins [J]. J Biol Chem, 2011, 286(22):19549-19555.
[44] SAITOH Y, SUZUKI H, TANI K, et al. Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin [J]. Science, 2015, 347(6223):775-778.
[45] BEIER L S, PIONTEK J, PIONTEK A, et al. Claudin-Targeted Suicide Gene Therapy for Claudin-Overexpressing Tumor Cells by Using Modified Clostridium perfringens Enterotoxin (CPE) [J]. Methods Mol Biol, 2022, 2521(23): 173-188.
[46] BLACK J D, LOPEZ S, COCCO E, et al. Clostridium perfringens enterotoxin (CPE) and CPE-binding domain (c-CPE) for the detection and treatment of gynecologic cancers [J]. Toxins (Basel), 2015, 7(4):1116-1125.
[47] BECKER A, LESKAU M, SCHLINGMANN-MOLINA B L, et al. Functionalization of gold-nanoparticles by the Clostridium perfringens enterotoxin C-terminus for tumor cell ablation using the gold nanoparticle-mediated laser perforation technique [J]. Sci Rep, 2018, 8(1):14963. Doi: 10.1038/s41598-018-37180-8.
[48] BECKER A, LEHRICH T, KALIES S, et al. Parameters for Optoperforation-Induced Killing of Cancer Cells Using Gold Nanoparticles Functionalized With the C-terminal Fragment of Clostridium Perfringens Enterotoxin [J]. Int J Mol Sci, 2019, 20(17):4248. Doi: 10.3390/ijms20174248.
[49] ALNAJJAR S, NOLTE I, BECKER A, et al. Ablation of Red Stable Transfected Claudin Expressing Canine Prostate Adenocarcinoma and Transitional Cell Carcinoma Cell Lines by C-CPE Gold-Nanoparticle-Mediated Laser Intervention [J]. Int J Mol Sci, 2021, 22(22):12289. Doi: 10.3390/ijms222212289.
[50] LANDERS K A, SAMARATUNGA H, TENG L, et al. Identification of claudin-4 as a marker highly overexpressed in both primary and metastatic prostate cancer [J]. Br J Cancer, 2008, 99(3):491-501.
[51] MARTIN D T, LEE J S, LIU Q, et al. Targeting prostate cancer with Clostridium perfringens enterotoxin functionalized nanoparticles co-encapsulating imaging cargo enhances magnetic resonance imaging specificity [J]. Nanomedicine, 2022, 40(3):102477. Doi: 10.1016/j.nano.2021.102477.
[52] SHIM M K, NA J, CHO I K, et al. Targeting of claudin-4 by Clostridium perfringens enterotoxin-conjugated polysialic acid nanoparticles for pancreatic cancer therapy [J]. J Controlled Release, 2021, 331(10):434-442.
[53] SHIM G, KIM M G, JIN H, et al. Claudin 4-targeted nanographene phototherapy using a Clostridium perfringens enterotoxin peptide-photosensitizer conjugate [J]. Acta Pharmacol Sin(中国药理学报), 2017, 38(6):954-962.
[54] JAFARI M, MEHRNEJAD F, AGHDAMI R, et al. Identification of the Crucial Residues in the Early Insertion of Pardaxin into Different Phospholipid Bilayers [J]. J Chem Inf Model, 2017, 57(4):929-941.
[55] TING C H, HUANG H N, HUANG T C, et al. The mechanisms by which pardaxin, a natural cationic antimicrobial peptide, targets the endoplasmic reticulum and induces c-FOS [J]. Biomaterials, 2014, 35(11):3627-3640.
[56] CHEN L, SHEN X, H Y. Research progress of endoplasmic reticulum targeting drug delivery system for anti-tumor immunotherapy [J]. Acta Pharm Sin (药学学报), 2022, 57(1):76-84.
[57] YUAN X, QN B, YIN H, et al. Virus-like Nonvirus Cationic Liposome for Efficient Gene Delivery via Endoplasmic Reticulum Pathway [J]. Acs Cent Sci, 2020, 6(2):174-188.
[58] QIN B, YUAN X, JIANG M, et al. Targeting DNA to the endoplasmic reticulum efficiently enhances gene delivery and therapy [J]. Nanoscale, 2020, 12(35):18249-18262.
[59] QIN B, JIANG M, LI X, et al. Oxygen nanocarrier broke the hypoxia trap of solid tumors and rescued transfection efficiency for gene therapy [J]. J Nanobiotechnol, 2021, 19(1):427. Doi: 10.1186/s12951-021-01144-4.
[60] SHI Y, ZHU C, LIU Y, et al. A Vaccination with Boosted Cross Presentation by ER-Targeted Antigen Delivery for Anti-Tumor Immunotherapy [J]. Adv Healthc Mater, 2021, 10(8):e2001934.
[61] LI W, YANG J, LUO L, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death [J]. Nat Commun, 2019, 10(1):3349. Doi: 10.1038/s41467-019-11269-8.
[62] TOSTESON M T, TOSTESON D C. The sting. Melittin forms channels in lipid bilayers [J]. Biophys J, 1981, 36(1):109-116.
[63] YU X, DAI Y, ZHAO Y, et al. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response [J]. Nat Commun, 2020, 11:1-14.
[64] ALHAKAMY N A, BADR-ELDIN S M, ALHARBI W S, et al. Development of an Icariin-Loaded Bilosome-Melittin Formulation with Improved Anticancer Activity against Cancerous Pancreatic Cells [J]. Pharmaceuticals (Basel), 2021, 14(12):1309. Doi: 10.1038/s41467-020-14906-9.
[65] MAO J, LIU S, AI M, et al. A novel melittin nano-liposome exerted excellent anti-hepatocellular carcinoma efficacy with better biological safety [J]. J Hematol Oncol, 2022, 15(1): 130. Doi: 10.1186/s13045-022-01277-5.
[66] LI Y, RUAN S, WANG Z, et al. Hyaluronic Acid Coating Reduces the Leakage of Melittin Encapsulated in Liposomes and Increases Targeted Delivery to Melanoma Cells [J]. Pharmaceutics, 2021, 13(8):1235. Doi: 10.3390/pharmaceutics13081235.
[67] BEI C, BINDU T, REMANT K C, et al. Dual secured nano-melittin for the safe and effective eradication of cancer cells [J]. J Mater Chem B, 2015, 3(1):25-29.
[68] CHENG B, XU P. Redox-Sensitive Nanocomplex for Targeted Delivery of Melittin [J]. Toxins (Basel), 2020, 12(9):582. Doi: 10.3390/toxins12090582.
[69] QI J, CHEN Y, XUE T, et al. Graphene oxide-based magnetic nanocomposites for the delivery of melittin to cervical cancer HeLa cells [J]. Nanotechnology, 2020, 31(6):065102. Doi: 10.1088/1361-6528/ab5084.
[70] YAZDIAN-ROBATI R, ARAB A, RAMEZANI M, et al. Smart aptamer-modified calcium carbonate nanoparticles for controlled release and targeted delivery of epirubicin and melittin into cancer cells in vitro and in vivo [J]. Drug Dev Ind Pharm, 2019, 45(4):603-610.
[71] YE R, ZHENG Y, CHEN Y, et al. Stable loading and delivery of melittin with lipid-coated polymeric nanoparticles for effective tumor therapy with negligible systemic toxicity [J]. ACS Appl Mater Interfaces, 2021, 13(47):55902-55912.
[72] RAVEENDRAN R, CHEN F, KENT B, et al. Estrone-decorated polyion complex micelles for targeted melittin delivery to hormone-responsive breast cancer cells [J]. Biomacromolecules, 2020, 21(3):1222-1233.
[73] SOMAN N R, LANZA G M, HEUSER J M, et al. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides [J]. Nano Lett, 2008, 8(4):1131-1136.
[74] PORNPATTANANANGKUL D, ZHANG L, OLSON S, et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection [J]. J Am Chem Soc, 2011, 133(11):4132-4139.
[75] ZHANG S, LU X, WANG B, et al. A soft anti-virulence liposome realizing the explosive release of antibiotics at an infectious site to improve antimicrobial therapy [J]. J Mater Chem B, 2021, 9(1):147-158.

基金

国家自然科学基金资助项目 (81973251); 河北省2021年度医学科学研究课题资助(20211108)
PDF(1804 KB)

Accesses

Citation

Detail

段落导航
相关文章

/